온디바이스 AI에 활용 가능
전력 소모는 줄이면서 초고속으로 거대언어모델(LLM)을 처리할 수 있는 인공지능(AI) 반도체 핵심 기술인 ‘상보형 트랜스포머’(Complementary-Transformer)를 국내 연구진이 개발했다.
과학기술정보통신부는 한국과학기술원(KAIST) PIM(Process In Memory)반도체 연구센터와 인공지능반도체대학원 유회준 교수 연구팀이 상보형 트랜스포머를 삼성전자의 파운드리 28나노 공정을 통해 개발했다고 6일 밝혔다.
과학기술정보통신부 |
<이미지를 클릭하시면 크게 보실 수 있습니다> |
상보형 트랜스포머란 인간 뇌의 구조와 기능을 모방해 설계한 뉴로모픽 컴퓨팅 시스템의 일종이다. ‘스파이킹 뉴럴 네트워크’(SNN·뇌의 뉴런이 스파이크라는 시간에 따른 신호를 사용해 정보를 처리하는 방식)와 ‘심층 인공신경망’(DNN·시각적 데이터 처리에 사용되는 딥러닝 모델)을 선택적으로 사용한다. 트랜스포머는 문장 속 단어와 같은 데이터 내부의 관계를 추적해 맥락과 의미를 학습하는 신경망으로 챗GPT의 원천 기술 중 하나이다.
GPT와 같은 거대언어모델은 그동안 다량의 그래픽처리장치(GPU)와 250와트의 전력 소모를 통해 구동해야 했지만, 연구팀은 4.5㎜×4.5㎜의 AI 반도체에서 400밀리와트 초저전력만 소모해 초고속 구현에 성공했다.
김상엽 KAIST 박사가 제1 저자로 참여한 이번 연구 결과는 지난달 19∼23일 미국 샌프란시스코에서 열린 ‘반도체 설계 올림픽’ 국제고체회로설계학회(ISSCC)에서 발표·시연됐다.
유회준 KAIST 교수는 “뉴로모픽 컴퓨팅은 IBM, 인텔 같은 회사들도 구현하지 못한 기술로, 초저전력의 뉴로모픽 가속기를 갖고 거대모델을 돌린 것은 세계 최초라고 자부한다”며 “온디바이스 AI의 핵심 기술인 만큼 앞으로도 관련 연구를 지속할 것”이라고 말했다.
이동인 기자
[ⓒ 매일경제 & mk.co.kr, 무단 전재, 재배포 및 AI학습 이용 금지]
이 기사의 카테고리는 언론사의 분류를 따릅니다.
기사가 속한 카테고리는 언론사가 분류합니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.