방사선치료는 고선량의 방사선을 조사해 암세포를 죽이는 항암치료다. 문제는 암세포 주변의 정상조직도 함께 파괴될 수 있다는 것이다. 이러한 부작용를 줄이는 동시에 치료 효과를 높이는게 치료 계획 수립에서 관건이다.
연세암병원 방사선종양학과 박상준·김진성 교수, 김재철AI대학원 예종철 교수·오유진 연구원 |
<이미지를 클릭하시면 크게 보실 수 있습니다> |
방사선치료 계획을 세우기 위해서는 의료진이 환자 정보와 컴퓨터단층촬영(CT) 등 영상검사 결과를 토대로 정상 장기와 암조직의 윤곽을 구별하는 과정을 거친다. 일일이 수작업으로 진행하는 만큼 시간 소모가 크다는 한계가 있었다.
박상준·김진성 교수팀과 카이스트 김재철AI대학원 예종철 교수·오유진 연구원은 거대언어모델(LLM)을 활용해 방사선치료 계획을 세우는 AI를 개발했다.
이번에 개발한 AI의 특징은 멀티모달 모델을 활용했다는 것이다. 텍스트는 물론 이미지, 오디오, 비디오 등 다양한 유형의 데이터를 처리할 수 있는 멀티모달 모듈을 통하면 영상 정보 외에 언어 정보 등을 반영할 수 있다. 영상검사 결과에만 의존했던 기존 방사선치료 모델과 다르게 환자의 병기, 질병 위치, 수술 방법 등을 계획 수립 때 추가로 고려할 수 있다.
연구팀은 AI 성능 검증을 이어갔다. 외부 검증과 전문가 평가에서 기존 인공지능 모델 대비 각각 1.9배, 2.36배 점수가 높았다. 인공지능과 의료진이 종양이라고 선정한 볼륨(CTV)이 얼마나 일치하는지 확인하는 외부 검증에서 연구팀 AI는 의료영상만 활용한 AI보다 1.9배 높은 점수를 획득했다. 방사선종양학과 전문의가 평가한 정확도 검사에서도 점수는 2.36배 뛰어났다.
박상준 교수는 “이번 연구는 LLM 기술이 실제 환자 진료에 어떻게 적용할 수 있는지를 보여주는 중요한 사례”라며 “앞으로 더 많은 연구를 통해 의료 현장에서 AI의 적용 범위를 넓혀갈 계획”이라고 말했다.
정용철 기자 jungyc@etnews.com
[Copyright © 전자신문. 무단전재-재배포금지]
이 기사의 카테고리는 언론사의 분류를 따릅니다.
기사가 속한 카테고리는 언론사가 분류합니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.