KAIST "화학 기본 기념 학습, 예측 성능 획기적 높여"
화학 기본 개념을 배운 AI가 소재 물성을 예측하는 모식도 |
(대전=연합뉴스) 박주영 기자 = 예측 정확도를 획기적으로 높인 인공지능(AI) 기반 소재 설계 기술이 개발됐다.
한국과학기술원(KAIST)은 화학과 이억균 명예교수와 김형준 교수 연구팀이 AI를 바탕으로 소재의 물성을 예측하는 기술인 '프로핏-넷'(PROFiT-Net)을 개발했다고 9일 밝혔다.
연구팀은 창원대 생물학화학융합학부 김원준 교수, 미국 UC 머세드 응용수학과 김창호 교수 연구팀과 공동연구를 통해 소재의 결정 구조뿐만 아니라 최외각 전자 배치, 이온화 에너지, 전기음성도 등 화학의 기본 개념을 학습해 AI 성능을 획기적으로 높이는 데 성공했다.
유전율(물질에 전기장을 걸 때 전기장이 변하는 비율), 밴드갭(전류를 흐르게 하는데 필요한 최소한의 에너지 값) 등 소재의 물성 예측에 있어서 기존 딥러닝 모델보다 오차를 적게는 10%에서 최대 40%까지 줄일 수 있다.
기존 모델과 연구팀이 개발한 '프로핏-넷'의 예측 오차 비교 |
김형준 교수는 "AI 기술이 기초 화학 개념을 바탕으로 더 발전할 수 있다는 가능성을 보여줬다"며 "반도체 소재나 기능성 소재 개발 등 다양한 분야에 활용할 수 있을 것"이라고 말했다.
이번 연구 결과는 국제 학술지 미국화학회지(Journal of the American Chemical Society)에 지난달 25일자로 실렸다.
jyoung@yna.co.kr
▶제보는 카카오톡 okjebo
▶연합뉴스 앱 지금 바로 다운받기~
▶네이버 연합뉴스 채널 구독하기
<저작권자(c) 연합뉴스, 무단 전재-재배포, AI 학습 및 활용 금지>
이 기사의 카테고리는 언론사의 분류를 따릅니다.
기사가 속한 카테고리는 언론사가 분류합니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.