미시건대와 디지털 바이오마커 개발
스마트폰에 구현된 이번 연구결과 모식도 [KAIST 제공] |
<이미지를 클릭하시면 크게 보실 수 있습니다> |
한국과 미국 연구진이 웨어러블 기기를 통해 수집되는 생체 데이터를 활용해 내일의 기분을 예측하고, 우울증 증상의 발현 가능성을 예측하는 기술을 개발했다.
KAIST는 뇌인지과학과 김대욱 교수 연구팀이 미국 미시간 대학교 수학과 대니엘 포저 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다.
세계보건기구(WHO)에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계와 수면에 중점을 두는 것이다.
공동연구팀은 스마트워치로부터 수집된 심박수와 활동량 시계열 데이터 등 매일 변화하는 생체시계의 위상을 정확히 추정하는 필터링 기술을 개발했다. 이는 뇌 속 일주기 리듬을 정밀하게 묘사하는 디지털 트윈(Digital twin)을 구현한 것으로, 이를 활용해 일주기 리듬 교란을 추정하는 데 활용될 수 있다.
김대욱 교수는 “수학을 활용해 그동안 잘 활용되지 못했던 웨어러블 생체 데이터를 실제 질병 관리에 적용할 수 있는 실마리를 제공하는 연구를 진행할 수 있어 매우 뜻깊다”면서 “현재 사회적 약자들이 우울증 증상을 경험할 때 상담센터에 연락하는 등 스스로 능동적인 행동을 취해야만 도움을 받을 수 있는 문제를 해결해, 정신건강 관리의 새로운 패러다임을 제시할 것”이라고 말했다.
이번 연구결과는 국제학술지 ‘npj 디지털 메디슨’ 12월 5일 온라인판에 게재됐다. 구본혁 기자
이 기사의 카테고리는 언론사의 분류를 따릅니다.
기사가 속한 카테고리는 언론사가 분류합니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.