컨텐츠 바로가기

04.25 (목)

차세대 신물질 ‘훈트금속’ 자성(磁性) 원리 최초 규명

댓글 첫 댓글을 작성해보세요
주소복사가 완료되었습니다

- 표준硏, 원자 수준 정밀측정기술 활용, 차세대 전자소자 응용 기대

헤럴드경제

문창연 박사가 '훈트금속'의 자성 원리를 설명하고 있다.[한국표준과학연구원 제공]

<이미지를 클릭하시면 크게 보실 수 있습니다>


[헤럴드경제=구본혁 기자] 한국표준과학연구원 첨단측정장비연구소 문창연 박사 연구팀은 신물질로 주목받는 ‘훈트금속’에서 자성이 생기는 원리를 컴퓨터 시뮬레이션 실험을 통해 세계최초로 밝혔다. 고효율 송전선, 자기부상열차, 자기공명영상장치(MRI) 등에 사용되는 초전도 현상의 상온 구현이나 새로운 작동원리의 디지털 소자 응용이 기대된다.

물질의 물리적 특성은 상호작용하는 전자들의 움직임에 의해 결정된다. 산업적으로 주로 응용되고 있는 반도체, 금속 물질은 전자 간의 거리가 상대적으로 멀다. 모든 전자의 움직임을 일일이 고려하지 않고 서로 간의 평균적 영향만을 고려하는 방식으로 물질 특성을 비교적 잘 예측할 수 있다.

훈트금속을 포함한 특정 물질들은 전자 간 거리가 매우 가까워 전자끼리 서로 강하게 상호작용하므로 평균에서 벗어나는 전자의 움직임이 중요하다. 이 같은 물질을 ‘강상관계 물질’이라 부른다. 강상관계 물질 중 하나인 훈트금속의 물성은 전자들의 스핀을 서로 같은 방향으로 정렬시키는 ‘훈트 상호작용’에 의해 좌우된다.

기존 반도체, 금속 물질 등에서 나타나는 것처럼 일반적으로 자성은 일정한 크기의 전자스핀이 고정되어 나타난다. 반면 훈트금속에서는 전자스핀이 시간에 따라 무작위로 방향을 바꾸는 스핀요동 현상이 나타난다. 스핀요동은 펨토 초(1000조 분의 1초) 영역의 매우 짧은 시간대에서 일어나 실험적으로 관찰이 어렵다.

연구팀은 컴퓨터 시뮬레이션을 통해 이를 관찰했다. 컴퓨터 시뮬레이션은 실험과 달리 물질의 구조나 상태를 필요에 따라 자유롭게 바꿀 수 있어, 관찰 영역의 시공간적 제약을 받지 않는다.

연구팀은 전자 간 복잡한 상호작용을 효과적으로 모사할 수 있는 이론적 방법론을 적용, 훈트금속에서 자성이 생기는 원리를 밝혔다. 또한 전자스핀의 방향이 바뀌는 빈도에 따라 자성의 크기가 크게 달라짐을 발견했다.

문창연 박사는 “훈트금속의 자성은 초전도성이나 전기전도도 등 다른 물성과 밀접하게 연관되어 있다”라며 “초전도 기술의 상온 구현이나 전도체-절연체 전이 현상을 이용한 새로운 전자소자 구현 등에 폭넓게 기여할 수 있을 것”이라고 말했다.

이번 연구결과는 계산 재료과학 분야 국제학술지인 ‘네이처 파트너 저널 컴퓨테이셔널 머티리얼스’ 10월 1일 온라인 게재됐다.

nbgkoo@heraldcorp.com

- Copyrights ⓒ 헤럴드경제 & heraldbiz.com, 무단 전재 및 재배포 금지 -
기사가 속한 카테고리는 언론사가 분류합니다.
언론사는 한 기사를 두 개 이상의 카테고리로 분류할 수 있습니다.